服務(wù)熱線(xiàn)
產(chǎn)品展示PRODUCTS
品牌 | 其他品牌 | 價(jià)格區間 | 面議 |
---|---|---|---|
產(chǎn)地類(lèi)別 | 進(jìn)口 | 儀器種類(lèi) | 實(shí)驗室型 |
應用領(lǐng)域 | 環(huán)保,化工,生物產(chǎn)業(yè),農業(yè),能源 | 多通道培養 | 8 |
LED光源 | 標配冷白光LED,8個(gè)通道光源可定制 | 光密度在線(xiàn)監測 | OD680/OD720 |
溫度控制 | 15℃~60℃ |
MC1000 8通道藻類(lèi)在線(xiàn)監測系統由8個(gè)100ml藻類(lèi)培養試管、水浴控溫系統、LEDs光源控制系統及光密度和溶解氧(選配)在線(xiàn)監測系統等組成,可用于藻類(lèi)培養與控制實(shí)驗、梯度對比實(shí)驗等,適于水體生態(tài)毒理學(xué)研究檢測、藻類(lèi)生理生態(tài)研究、水生態(tài)研究等,MC1000 8通道藻類(lèi)在線(xiàn)監測系統主要功能特點(diǎn)如下:
8通道藻類(lèi)培養,每個(gè)藻類(lèi)培養試管可培養85ml藻液
LEDs光源,可對每個(gè)培養試管獨立調節控制和設置光強度和時(shí)間,如晝夜變化等
光密度在線(xiàn)監測,包括OD680、OD720,監測數據自動(dòng)存儲
溶解氧在線(xiàn)監測(備選)以測量分析藻類(lèi)光合作用等
溫度、光照控制可用戶(hù)設置不同的程序模式
氣泡混勻:可通過(guò)調節閥手動(dòng)調節氣流量以對培養試管內的藻類(lèi)進(jìn)行混勻
可選配O2/CO2監測系統,在線(xiàn)監測藻類(lèi)光合放氧和CO2吸收
可選配藻類(lèi)熒光測量模塊
應用領(lǐng)域:
l 多通道同步藻類(lèi)培養
l 同步梯度脅迫實(shí)驗
l 培養條件優(yōu)化
l 控制培養條件與藻類(lèi)生長(cháng)動(dòng)力學(xué)監測
儀器型號:
MC 1000-OD: 8個(gè)通道光源顏色相同,標配冷白光LED
MC 1000-OD-WW:8個(gè)通道光源顏色相同,標配暖白光LED
MC 1000-OD-MULTI: 8個(gè)通道光源顏色不同,分別為1)紫光405nm,2)藍紫光450nm,3)藍光470nm或冷白光,4)暖白光,5)綠光540nm,6)黃橙光590nm,7)紅光640nm,8)遠紅光730nm。
MC 1000-OD-MIX:每個(gè)通道可配備多8種不同顏色的LED光源,光源顏色可由用戶(hù)定制,可選顏色為1)紫光405nm,2)藍紫光450nm,3)藍光470nm或冷白光,4)暖白光,5)綠光540nm,6)黃橙光590nm,7)紅光640nm,8)遠紅光730nm。
技術(shù)指標:
藻類(lèi)同步培養通道:8個(gè)
培養管容量:100ml,建議大培養容量85ml
在線(xiàn)即時(shí)監測參數:分別監測每個(gè)培養管的OD680和OD720,數據自動(dòng)保存到主機內存中,PIN光電二極管檢測器,665-750nm帶通濾波器
精確控溫范圍:標準配置高于環(huán)境溫度5-10℃(與光強有關(guān))~60℃,可選配15℃-60℃(環(huán)境溫度20℃,需加配制冷單元)
加熱系統:150W筒形加熱器
水浴體積:5L
水浴自動(dòng)補水模塊(選配):水浴水位因蒸發(fā)降低后可自動(dòng)補水
光源系統:全LED光源,可在0-100%范圍內調控,每個(gè)通道的光強可分別獨立調控
MC 1000-OD:標配冷白光LED,可選配暖白光、紅光(635nm)或藍光(470nm)LED;光強0-1000μmol/m2/s可調, 可升級至0-2500μmol/m2/s
MC 1000-OD-WW:標配暖白光LED,光強0-1000μmol/m2/s可調,更高光強可定制
MC 1000-OD-MULTI:8個(gè)通道光源顏色不同,分別為紫光405nm,藍紫光450nm,藍光470nm或冷白光,暖白光,綠光540nm,黃橙光590nm,紅光640nm,遠紅光730nm;光強0-1000μmol/m2/s可調
MC 1000-OD-MIX:每個(gè)通道可配備多8種不同顏色的LED光源,光源顏色可由用戶(hù)定制,大光強可達2500μmol/m2/s
控光模式:可靜態(tài)或動(dòng)態(tài)設置光照程序,如正弦、晝夜節律、脈沖等
控制單元顯示屏:可調控培養程序和顯示數據
氣流調控:通過(guò)多管調節閥對8個(gè)培養管手動(dòng)獨立調控氣體流量
OD測量程序:將主機內存中的OD數據下載到電腦中并以圖表形式顯示,數據可導出為T(mén)XT或Excel文件
MC實(shí)時(shí)在線(xiàn)監測分析模塊(含工作站和軟件基礎版或高級版,選配)
同時(shí)控制2臺MC1000(基礎版)或無(wú)限臺MC1000(高級版)
通過(guò)PBR軟件動(dòng)態(tài)調控光照和溫度模式
通過(guò)光密度(OD680、OD720)變化實(shí)時(shí)監測藻類(lèi)生物量
對生長(cháng)速率進(jìn)行實(shí)時(shí)回歸分析
多數據管理功能(過(guò)濾、查找、多重導出)
可將測量數據、培養程序和其他信息保存到數據庫中
通過(guò)GUI圖形用戶(hù)界面設置培養程序并在線(xiàn)顯示測量數據圖
數據可導出為CSV、Excel或XML文件
支持GMS高精度氣體混合系統(僅限高級版)
用戶(hù)自編程培養程序(僅限高級版)
設定實(shí)驗起始時(shí)間(僅限高級版)
電子郵件通知(僅限高級版)
GMS150高精度氣體混合系統(選配):可控制氣體流速和成分,標配為控制氮氣/空氣和二氧化碳,氣源需用戶(hù)自備
恒濁控制模塊(選配):帶有8個(gè)控制閥,可獨立控制8個(gè)培養管的濁度,由軟件自動(dòng)控制
O2/CO2監測系統(選配):8通道續批式監測藻類(lèi)CO2吸收或光合放氧通量:
氧氣分析測量:氧氣測量范圍0-100%,分辨率0.0001%,精確度優(yōu)于0.1%,溫度、壓力補償,數碼過(guò)濾(噪音)0-50秒可調,具兩行文字數字LCD背光顯示屏,可同時(shí)顯示氧氣含量和氣壓
二氧化碳分析測量:雙波長(cháng)非色散紅外技術(shù),測量范圍0-5%或0-15%兩級選擇(雙程),分辨率優(yōu)于0.0001%或1ppm(可達0.1ppm),精確度1%,通過(guò)軟件溫度補償,具兩行文字數字LCD背光顯示屏,可同時(shí)顯示CO2含量和氣壓,具數碼過(guò)濾(噪音)功能
氣體抽樣與氣路切換:具備隔膜泵、氣流控制針閥和精密流量計,氣路自動(dòng)定時(shí)切換功能
藻類(lèi)熒光測量模塊(選配):用于測量藻類(lèi)熒光參數以反映藻類(lèi)生理狀態(tài)及濃度,熒光測量程序包括Ft,QY,OJIP-test,NPQ、光響應曲線(xiàn)等,可選配探頭式測量或試管式測量:
探頭式測量:具備光纖測量探頭,可插入培養液中原位測量藻類(lèi)熒光參數
試管式測量:具備測量杯,可取樣精確測量藻類(lèi)熒光參數及光密度值
通訊方式:USB
尺寸:71×33×21 cm
重量:13kg
供電:110-240V
應用案例:
不同CO2濃度下衣藻Chlamydomonas的生長(cháng)曲線(xiàn)(Zhang,2014)
聚球藻Synechococcus野生型和△nblA的生長(cháng)曲線(xiàn)(Yu,2015)
產(chǎn)地:捷克
參考文獻:
1. Barera S, et al. 2021. Effect of lhcsr gene dosage on oxidative stress and light use efficiency by Chlamydomonas reinhardtii cultures. Journal of Biotechnology 328: 0168-1656.
2. Pivato M, et al. 2021. Heterologous expression of cyanobacterial Orange Carotenoid Protein (OCP2) as a soluble carrier of ketocarotenoids in Chlamydomonas reinhardtii. Algal Research 55(16):102255.
3. Gachelin M, et al. 2021. Enhancing PUFA-rich polar lipids in Tisochrysis lutea using adaptive laboratory evolution (ALE) with oscillating thermal stress. Applied Microbiology and Biotechnology 105: 301-312.
4. Chen H, et al. 2021. A Novel Mode of Photoprotection Mediated by a Cysteine Residue in the Chlorophyll Protein IsiA. mBio 12(1).
5. Cecchin M, et al. 2021. CO2 supply modulates lipid remodelling, photosynthetic and respiratory activities in Chlorella species 18(2): 431842.
6. Dixit RB, et al. 2021. Secretomics: A Possible Biochemical Foot Printing Tool in Developing Microalgal C*tion Strategies. doi: 10.21203/rs.3.rs-163118/v1
7. Kareya MS, et al. 2020. Photosynthetic Carbon Partitioning and Metabolic Regulation in Response to Very-Low and High CO2 in Microchloropsis gaditana NIES 2587. Frontiers in Plant Science 11: 981.
8. Billey E, et al. 2021. Characterization of the Bubblegum acyl-CoA synthetase of Microchloropsis gaditana. Plant Physiology 185(3): 815-835.
9. Vonshak A, et al. 2020. Photosynthetic characterization of two Nannochloropsis species and its relevance to outdoor c*tion. Journal of Applied Phycology 32(2):909-922.
10. Dienst D, et al. (2020). High density c*tion for efficient sesquiterpenoid biosynthesis in Synechocystis sp. PCC 6803. Scientific Reports 10(1): 5932.
11. Weiner I, et al. 2020. CSO -A sequence optimization software for engineering chloroplast expression in Chlamydomonas reinhardtii. Algal Research 46: 101788.
12. Akma C, et al. 2020. Two-phase method of c*ting Coelastrella species for increased production of lipids and carotenoids. Bioresource Technology Reports 9: 100366.
13. Cecchin M, et al. 2020. Improved lipid productivity in Nannochloropsis gaditana in nitrogen-replete conditions by selection of pale green mutants. Biotechnology for Biofuels 13(1): 78.
14. Alvarenga D, et al. 2020. AcnSP – A Novel Small Protein Regulator of Aconitase Activity in the Cyanobacterium Synechocystis sp. PCC 6803. Frontiers in Microbiology 11: 1445.
15. Zhang B, et al. 2020. The carbonate concentration mechanism of Pyropia yezoensis (Rhodophyta): evidence from transcriptomics and biochemical data. BMC Plant Biology 20(1): 424.
16. Nzayisenga, JC, et al. 2020. Effects of light intensity on growth and lipid production in microalgae grown in wastewater. Biotechnology for Biofuels 13(284): 1179-1184.
17. Cecchin M, et al. 2020. Improved lipid productivity in Nannochloropsis gaditana in nitrogen-replete conditions by selection of pale green mutants. Biotechnology for Biofuels 13(6): 312.
18. Flamholz AI, et al. 2020. Functional reconstitution of a bacterial CO2 concentrating mechanism in Escherichia coli. eLife 9: e59882.
19. Gupta JK, et al. 2020. Overexpression of bicarbonate transporters in the marine cyanobacterium Synechococcus sp. PCC 7002 increases growth rate and glycogen accumulation. Biotechnology for Biofuels 13: 17.
20. Valev D, et al. 2020. Testing the Potential of Regulatory Sigma Factor Mutants for Wastewater Purification or Bioreactor Run in High Light. Current Microbiology 77(8) : 1590-1599.
21. Yao L, et al.. 2020. Pooled CRISPRi screening of the cyanobacterium Synechocystis sp PCC 6803 for enhanced industrial phenotypes. Nature Communications 11(1): 1666.
22. Shrameeta S, et al. 2020. Glycogen Metabolism Supports Photosynthesis Start through the Oxidative Pentose Phosphate Pathway in Cyanobacteria1. Plant Physiology 182(1):507-517.
23. Alessandra B, et al. 2020. Photosynthesis Regulation in Response to Fluctuating Light in the Secondary Endosymbiont Alga Nannochloropsis gaditana. Plant & Cell Physiology 61(1): 41-52..